Skip to contents

Geoms

The uncertainty equivalent of the ggplot geom functions. This is how you will typically interact with ggdibbler, as it is how you usually interact with ggplot2.

geom_abline_sample() geom_hline_sample() geom_vline_sample()
Reference lines with uncertainty: horizontal, vertical, and diagonal
geom_bar_sample() geom_col_sample() stat_count_sample()
Uncertain Bar Charts
geom_bin_2d_sample() stat_bin_2d_sample()
Uncertain heatmap of 2d bin counts
geom_boxplot_sample() stat_boxplot_sample()
An uncertain box and whiskers plot (in the style of Tukey)
geom_contour_sample() geom_contour_filled_sample() stat_contour_sample() stat_contour_filled_sample()
Uncertain 2D contours of a 3D surface
geom_count_sample() stat_sum_sample()
Uncertain Count overlapping points
geom_density_2d_sample() geom_density_2d_filled_sample() stat_density_2d_sample() stat_density_2d_filled_sample()
Uncertain contours of a 2D density estimate
geom_density_sample() stat_density_sample()
Visualise densities with Uncertainty
geom_dotplot_sample()
Dot plot with uncertainty
geom_hex_sample() stat_bin_hex_sample()
Uncertain hexagonal heatmap of 2d bin counts
geom_freqpoly_sample() geom_histogram_sample() stat_bin_sample()
Histograms and frequency polygons with uncertainty
geom_jitter_sample()
Uncertain Jittered Points
geom_crossbar_sample() geom_errorbar_sample() geom_linerange_sample() geom_pointrange_sample()
Vertical intervals: lines, crossbars & errorbars with uncertainty
geom_path_sample() geom_line_sample() geom_step_sample()
Uncertain Connected observations
geom_point_sample()
Visualise Uncertain Points
geom_polygon_sample()
Uncertain Polygons
geom_qq_line_sample() stat_qq_line_sample() geom_qq_sample() stat_qq_sample()
A quantile-quantile plot with uncertainty
geom_quantile_sample() stat_quantile_sample()
Quantile regression with uncertainty
geom_ribbon_sample() geom_area_sample() stat_align_sample()
Ribbons and area plots with uncertainty
geom_rug_sample()
Uncertain Rug plots in the margins
geom_curve_sample() geom_segment_sample()
Line segments and curves with uncertainty
geom_sf_sample()
Visualise Sf Objects with Uncertainty
geom_smooth_sample() stat_smooth_sample()
Uncertain Smooth
geom_spoke_sample()
Line segments parameterised by location, direction and distance, with uncertainty
geom_label_sample() geom_text_sample()
Uncertain Text
geom_raster_sample() geom_rect_sample() geom_tile_sample()
Plot rectangles with uncertainty
geom_violin_sample() stat_ydensity_sample()
Violin plots with uncertainty

Stats

These are the ggdibbler versions of the layer better specified by the stats in the ggplot documentation.

sample_expand() dibble_to_tibble()
Simulate outcomes from dibble to make a tibble
stat_identity_sample()
Generates a sample from a distribution
stat_ecdf_sample()
Compute uncertain empirical cumulative distributions
stat_ellipse_sample()
Compute normal data ellipses with uncertainty
stat_connect_sample()
Connect uncertain observations
stat_manual_sample()
Manually compute transformations with uncertainty
stat_summary_2d_sample() stat_summary_hex_sample()
Bin and summarise in 2d (rectangle & hexagons) with uncertain inputs
stat_summary_bin_sample() stat_summary_sample()
Summarise y values at unique/binned x with uncertainty
stat_unique_sample()
Remove duplicates (with uncertainty?)

Position

These positions allow you to nest the distribution overplotting within a different ggplot2 position adjustment

position_dodge_dodge() position_dodge_identity() position_identity_dodge()
Nested dodge positions
position_identity_identity()
Nested identity positions
position_nest()
Any combination of nested positions
position_stack_identity() position_stack_dodge()
Nested stack positions
position_subdivide()
Subdivide position aesthetic in a geometry

Scale

These scales support allow distributions to be passed to ggplot with ease. They identify the scale type needed, and allow you to personalise the limits/labels of continuous x and y axis.

scale_x_continuous_distribution() scale_y_continuous_distribution()
Position scales for continuous distributions
scale_x_discrete_distribution() scale_y_discrete_distribution()
Position scales for discrete distributions
scale_type(<distribution>)
Sets scale for distributions

Data

ggdibbler comes with a handful of data sets with uncertain values to show the use of the package. Most of these datasets are ggplot2 datasets with uncertainty added in.

toy_temp_dist
A toy data set that provides data for a map with the temperature of each area represented by a random variable.
toy_temp
A toy data set that has the ambient temperature as measured by a collection of citizen scientists for each Iowa county
smaller_diamonds uncertain_diamonds
An uncertain (and shrunk down) version of the diamonds data from`ggplot2`
uncertain_mpg
An uncertain version of the MPG data from `ggplot2`
uncertain_mtcars
An uncertain version of the mtcars data from base R `datasets`
uncertain_economics_long
An uncertain version of the economics data from`ggplot2`
uncertain_faithfuld
2d density estimate of Old Faithful data with uncertainty
uncertain_faithful
Old Faithful data with uncertainty
walktober
Step Counts from Walktober 2025 Challenge