
Package index
Geoms
The uncertainty equivalent of the ggplot geom functions. This is how you will typically interact with ggdibbler, as it is how you usually interact with ggplot2.
-
geom_abline_sample()geom_hline_sample()geom_vline_sample() - Reference lines with uncertainty: horizontal, vertical, and diagonal
-
geom_bar_sample()geom_col_sample()stat_count_sample() - Uncertain Bar Charts
-
geom_bin_2d_sample()stat_bin_2d_sample() - Uncertain heatmap of 2d bin counts
-
geom_boxplot_sample()stat_boxplot_sample() - An uncertain box and whiskers plot (in the style of Tukey)
-
geom_contour_sample()geom_contour_filled_sample()stat_contour_sample()stat_contour_filled_sample() - Uncertain 2D contours of a 3D surface
-
geom_count_sample()stat_sum_sample() - Uncertain Count overlapping points
-
geom_density_2d_sample()geom_density_2d_filled_sample()stat_density_2d_sample()stat_density_2d_filled_sample() - Uncertain contours of a 2D density estimate
-
geom_density_sample()stat_density_sample() - Visualise densities with Uncertainty
-
geom_dotplot_sample() - Dot plot with uncertainty
-
geom_hex_sample()stat_bin_hex_sample() - Uncertain hexagonal heatmap of 2d bin counts
-
geom_freqpoly_sample()geom_histogram_sample()stat_bin_sample() - Histograms and frequency polygons with uncertainty
-
geom_jitter_sample() - Uncertain Jittered Points
-
geom_crossbar_sample()geom_errorbar_sample()geom_linerange_sample()geom_pointrange_sample() - Vertical intervals: lines, crossbars & errorbars with uncertainty
-
geom_path_sample()geom_line_sample()geom_step_sample() - Uncertain Connected observations
-
geom_point_sample() - Visualise Uncertain Points
-
geom_polygon_sample() - Uncertain Polygons
-
geom_qq_line_sample()stat_qq_line_sample()geom_qq_sample()stat_qq_sample() - A quantile-quantile plot with uncertainty
-
geom_quantile_sample()stat_quantile_sample() - Quantile regression with uncertainty
-
geom_ribbon_sample()geom_area_sample()stat_align_sample() - Ribbons and area plots with uncertainty
-
geom_rug_sample() - Uncertain Rug plots in the margins
-
geom_curve_sample()geom_segment_sample() - Line segments and curves with uncertainty
-
geom_sf_sample() - Visualise Sf Objects with Uncertainty
-
geom_smooth_sample()stat_smooth_sample() - Uncertain Smooth
-
geom_spoke_sample() - Line segments parameterised by location, direction and distance, with uncertainty
-
geom_label_sample()geom_text_sample() - Uncertain Text
-
geom_raster_sample()geom_rect_sample()geom_tile_sample() - Plot rectangles with uncertainty
-
geom_violin_sample()stat_ydensity_sample() - Violin plots with uncertainty
Stats
These are the ggdibbler versions of the layer better specified by the stats in the ggplot documentation.
-
sample_expand()dibble_to_tibble() - Simulate outcomes from dibble to make a tibble
-
stat_identity_sample() - Generates a sample from a distribution
-
stat_ecdf_sample() - Compute uncertain empirical cumulative distributions
-
stat_ellipse_sample() - Compute normal data ellipses with uncertainty
-
stat_connect_sample() - Connect uncertain observations
-
stat_manual_sample() - Manually compute transformations with uncertainty
-
stat_summary_2d_sample()stat_summary_hex_sample() - Bin and summarise in 2d (rectangle & hexagons) with uncertain inputs
-
stat_summary_bin_sample()stat_summary_sample() - Summarise y values at unique/binned x with uncertainty
-
stat_unique_sample() - Remove duplicates (with uncertainty?)
Position
These positions allow you to nest the distribution overplotting within a different ggplot2 position adjustment
-
position_dodge_dodge()position_dodge_identity()position_identity_dodge() - Nested dodge positions
-
position_identity_identity() - Nested identity positions
-
position_nest() - Any combination of nested positions
-
position_stack_identity()position_stack_dodge() - Nested stack positions
-
position_subdivide() - Subdivide position aesthetic in a geometry
Scale
These scales support allow distributions to be passed to ggplot with ease. They identify the scale type needed, and allow you to personalise the limits/labels of continuous x and y axis.
-
scale_x_continuous_distribution()scale_y_continuous_distribution() - Position scales for continuous distributions
-
scale_x_discrete_distribution()scale_y_discrete_distribution() - Position scales for discrete distributions
-
scale_type(<distribution>) - Sets scale for distributions
Data
ggdibbler comes with a handful of data sets with uncertain values to show the use of the package. Most of these datasets are ggplot2 datasets with uncertainty added in.
-
toy_temp_dist - A toy data set that provides data for a map with the temperature of each area represented by a random variable.
-
toy_temp - A toy data set that has the ambient temperature as measured by a collection of citizen scientists for each Iowa county
-
smaller_diamondsuncertain_diamonds - An uncertain (and shrunk down) version of the diamonds data from`ggplot2`
-
uncertain_mpg - An uncertain version of the MPG data from `ggplot2`
-
uncertain_mtcars - An uncertain version of the mtcars data from base R `datasets`
-
uncertain_economics_long - An uncertain version of the economics data from`ggplot2`
-
uncertain_faithfuld - 2d density estimate of Old Faithful data with uncertainty
-
uncertain_faithful - Old Faithful data with uncertainty
-
walktober - Step Counts from Walktober 2025 Challenge