Monash University, Australia
scientistID | county_name | recorded_temp |
---|---|---|
#74991 | Lyon County | 21.1 |
#22780 | Dubuque County | 28.9 |
#55325 | Crawford County | 26.4 |
#46379 | Allamakee County | 27.1 |
#84259 | Jones County | 34.2 |
990
citizen scientists participated
After we send in our data plot The Bureau of Meteorology call us and let us know that we are only looking for a trend in the average values of the counties
county_name | temp_mean |
---|---|
Adair County | 29.7 |
Adams County | 29.6 |
Allamakee County | 26.3 |
Appanoose County | 22.8 |
Audubon County | 27.6 |
distributional
county_name | temp_dist |
---|---|
Adair County | N(30, 0.82) |
Adams County | N(30, 1) |
Allamakee County | N(26, 0.3) |
Appanoose County | N(23, 0.69) |
Audubon County | N(28, 0.8) |
distributional
lets you store distributions in a tibble
as distribution objectsVizumap
ggplot2
flexibility is lost
ggplot
recognises the random variable input, and changes the visualisation accordinglyggplot
settings as possibleVizumap
code# load the package
library(Vizumap)
library(sf)
sf_use_s2(FALSE)
# Step 1: Format data using bespoke data formatting function
data <- read.uv(data = original_data,
estimate = "mean",
error = "standard_error")
# Step 2: Pixelate the shapefile
pixelation <- pixelate(geoData = geometry_data,
id = "ID",
# improved - set number of pixels
pixelSize = 100)
# Step 3: Build pixel map
pixel_map <- build_pmap(data = data,
distribution = "normal",
pixelGeo = pixelation,
id = "ID",
# You can only use a set palette
palette = "Oranges"
border = geometry_data)
# Step 4: Print pixel map
view(pixel_map)
ggplot2
to implement itggplot2
uses the grammar of graphicsggdibbler
is forggdibbler
ggdibbler
packageggdist
alphabetically in package list
ggdibbler
Exampleggplot(toy_temp_dist) +
geom_sf_sample(aes(geometry=county_geometry, fill=temp_dist), linewidth=0, n=7) +
geom_sf(aes(geometry = county_geometry), fill=NA, linewidth=0.5, colour="white") +
theme_minimal() +
scale_fill_distiller(palette = "YlOrRd", direction= 1) +
xlab("Longitude") +
ylab("Latitude") +
labs(fill = "Temperature") +
ggtitle("A super cool and customised plot")
ggplot(toy_temp_dist) +
geom_sf_sample(aes(geometry=county_geometry, fill=temp_dist), linewidth=0, n=7) +
geom_sf(aes(geometry = county_geometry), fill=NA, linewidth=0.5, colour="white") +
theme_minimal() +
scale_fill_distiller(palette = "YlOrRd", direction= 1) +
xlab("Longitude") +
ylab("Latitude") +
labs(fill = "Temperature") +
ggtitle("A super cool and customised plot")
ggdibbler
Future Plansggdibbler
variations of other geom_*()
functions
geom_point()
, etc.ggplot2
was not designed for accessing colour space directlydibble
object so that geom_sf()
automatically does geom_sf_sample()
if you pass a distribution inggdibbler
Future Plans